<u>Translation</u>: You will need to be able to translate a figure when given a rule, translate to a given point, and write a rule when given the pre-image and image.

1. Plot the points:

Translate:
$$(x+5, y+6)$$

right 5 up b

2. Translate CAT → C'A'T'

3. Translate ROAD \rightarrow R'O'A'D'

Write the rule: $(x,y) \rightarrow (x+5, y-3)$

Write the rule: $(x,y) \rightarrow (x-2,y-5)$

<u>Reflections</u>: You will need to be able to reflect over an axis, over a given horizontal or vertical line, or over a line in the form y = mx + b.

4. Reflect MAP over the y-axis.

5. Reflect TACK over y = -1

6. Reflect TACK over y = x

7. Reflect DOT over the given line.

Rotation: You will need to be able to rotate a figure around the origin, or around a given point.

8. Rotate ABC 180° about the origin

10. Rotate ABCDE 90° clockwise around 11. the point (-1, -1)

Perpendicular Lines: You will need to be able to write and/or graph the slope of a line that is perpendicular to a given line or equation.

12. Draw a line that is perpendicular to the given line. $m = \frac{1}{2} \quad lm = -2$

Graph the line $y = \frac{1}{3}x - 2$, then 13. graph a line that is perpendicular to it.

Give the slope of a line that is perpendicular to $y = -\frac{2}{3}x + 4$ 14.

$$\perp m = \frac{3}{2}$$

Give the slope of a line that is perpendicular to y = 2x - 515.

$$Lm = -\frac{1}{2}$$

Symmetry & Rotational Symmetry: You will need to determine how many and where the lines of symmetry are for a given figure. You will need to be able to find the angle of rotational symmetry for a given figure.

For each figure:

- a) draw all lines of symmetry and determine the total number of lines of symmetry
- b) give the angle of rotation if there is rotational symmetry.

- b. $\frac{360}{4} = 90^{\circ}$ a.

b. 360 = 51.43° a. lin

How many lines of symmetry will a regular 38-gon have? What is the angle of rotation? 19.

38 lines of symmetry,
$$\frac{360}{38} = 9.47^{\circ}$$

How many lines of symmetry will a regular 14-gon have? What is the angle of rotation?

20.